Соответствие русских и английских наименований некоторых функций

ABS	ABS
ACOS	ACOS
ACOSH	ACOSH
ASC	ASC
ASIN	ASIN
ASINH	ASINH
ATAN	ATAN
ATAN2	ATAN2
ATANH	ATANH
cos	cos
COSH	COSH
EXP	EXP
FРАСΠ	FDIST
FРАСПОБР	FINV
LN	LN
LOG	LOG
LOG10	LOG10
SIN	SIN
SINH	SINH
TAN	TAN
IAN	IAN

TANH	TANH
ZTECT	ZTEST
АБССЫЛ	ABSREF
АДРЕС	ADDRESS
БДДИСП	DVAR
БДДИСПП	DVARP
БДПРОИЗВЕД	DPRODUCT
БДСУММ	DSUM
БЕССЕЛЬ.І	BESSELI
БЕССЕЛЬ.Ј	BESSELJ
БЕССЕЛЬ.К	BESSELK
БЕССЕЛЬ.Ү	BESSELY
БЕТАОБР	BETAINV
БЕТАРАСП	BETADIST
БИНОМРАСП	BINOMDIST
ВЕЙБУЛЛ	WEIBULL
ВЕРОЯТНОСТЬ	PROB
времзнач	TIMEVALUE
время	TIME
ВСТАВИТЬ	PASTE

ГАММАРАСП	GAMMADIST
ГИПЕРГЕОМЕТ	HYPGEOMDIST
ГИПЕРССЫЛКА	HYPERLINK
ГРАДУСЫ	DEGREES
ДАТА	DATE
ДИСП	VAR
ДИСПА	VARA
ДИСПР	VARP
ДИСПРА	VARPA
ДОВЕРИТ	CONFIDENCE
ЕСЛИ	IF
И	AND
или	OR
ИНАЧЕ	ELSE
ИСТИНА	TRUE
КВАДРОТКЛ	DEVSQ
КВАРТИЛЬ	QUARTILE
КВПИРСОН	RSQ
KOBAP	COVAR
КОДСИМВ	CODE
·	

КОРЕНЬ	SQRT
КОРЕНЬПИ	SQRTPI
КОРРЕЛ	CORREL
КРИТБИНОМ	CRITBINOM
ЛГРФПРИБЛ	LOGEST
ЛИНЕЙН	LINEST
ЛИСТ.ПОДЛОЖКА	SHEET.BACKGROUND
ЛОГНОРМОБР	LOGINV
ЛОГНОРМРАСП	LOGNORMDIST
ЛОЖЬ	FALSE
MAKC	MAX
MAKCA	MAXA
МЕДИАНА	MEDIAN
МЕСЯЦ	MONTH
МЕТКА.ДАННЫХ	DATA.LABEL
МЕТКА.СВОЙСТВА	LABEL.PROPERTIES
МИН	MIN
МИНА	MINA
МИНУТЫ	MINUTE
МОБР	MINVERSE

МОДА	MODE
МОПРЕД	MDETERM
МУЛЬТИНОМ	MULTINOMIAL
МУМНОЖ	MMULT
HE	NOT
HEYËT	ODD
НОД	GCD
НОК	LCM
HOPMA	RATE
НОРМАЛИЗАЦИЯ	STANDARDIZE
НОРМОБР	NORMINV
НОРМРАСП	NORMDIST
НОРМСТОБР	NORMSINV
НОРМСТРАСП	NORMSDIST
OKPBBEPX	CEILING
ОКРВНИЗ	FLOOR
ОКРУГЛ	ROUND
ОКРУГЛВВЕРХ	ROUNDUP
ОКРУГЛВНИЗ	ROUNDDOWN
ОКРУГЛТ	MROUND

OCTAT	MOD
ОТБР	TRUNC
ПЕРСЕНТИЛЬ	PERCENTILE
ПИ	PI
ПИРСОН	PEARSON
ПОДБОР.ПАРАМЕТРА	GOAL.SEEK
ПОДСТАВИТЬ	SUBSTITUTE
ПОИСК	SEARCH
ПРОГРЕССИЯ	DATA.SERIES
ПРОИЗВЕД	PRODUCT
ПУАССОН	POISSON
РАЗНДАТ	DATEDIF
РАНГ	RANK

СКОС	SKEW
СЛЧИС	RAND
СМЕЩ	OFFSET
СОРТИРОВКА	SORT
СРГАРМ	HARMEAN
СРГЕОМ	GEOMEAN
СРЗНАЧ	AVERAGE
СРЗНАЧА	AVERAGEA
СРОТКЛ	AVEDEV
СТАНДОТКЛОН	STDEV
СТАНДОТКЛОНА	STDEVA
СТАНДОТКЛОНП	STDEVP
СТАНДОТКЛОНПА	STDEVPA
СТЬЮДРАСП	TDIST
СТЬЮДРАСПОБР	TINV
СУММ	SUM
СУММЕСЛИ	SUMIF
СУММКВ	SUMSQ
СУММКВРАЗН	SUMXMY2
СУММПРОИЗВ	SUMPRODUCT
СУММРАЗНКВ	SUMX2MY2

SUMX2PY2
COUNT
COUNTIF
COUNTA
COUNTBLANK
Т
PRECISION
TRANSPOSE
TTEST
FISHER
FISHERINV
FTEST
CHIINV
CHIDIST
CHITEST
EXPONDIST
KURT

Пакет "Анализ данных" Microsoft Excel

В состав Microsoft Excel входит набор средств анализа данных (Анализ данных), предназначенный для решения достаточно сложных статистических задач. Для проведения анализа данных с помощью инструментов пакета указываются входные данные и параметры; анализ проводится с помощью подходящей статистической макрофункции, а результат помещается в выходной диапазон.

Для того чтобы отыскать команду вызова надстройки Пакет анализа, необходимо воспользоваться меню Сервис.

Если в меню Сервис отсутствует команда Анализ данных, то в этом случае необходимо в том же меню выполнить команду Надстройки. Раскроется одноименное окно) со списком доступных надстроек. В этом списке нужно найти и "отсчелкнуть" элемент Пакет анализа. После этого в меню Сервис появится требуемая команда.

Эта ситуация наиболее типична, так как надстройка Пакет анализа инсталлируется при стандартной установке.

Если в меню Сервис отсутствует команда Анализ данных, а в списке окна Надстройки нет элемента Пакет анализа, то без установочного файла или компакт-диска в этом случае не обойтись. Для "доустановки" Excel с дистрибутива Microsoft Office нужно перейти в папку Панель управления и через Установка и удаление программ выполнить требуемое.

Доступные средства. Чтобы просмотреть список доступных инструментов анализа, выберите команду Анализ данных в меню Сервис. Если команда Анализ данных в меню Сервис отсутствует, то необходима установка пакета.

Инструменты пакета анализа в Microsoft Excel

Дисперсионный анализ

Пакет анализа включает в себя три средства дисперсионного анализа. Выбор конкретного инструмента определяется числом факторов и числом выборок в исследуемой совокупности данных.

<u>Однофакторный дисперсионный</u> анализ используется для проверки гипотезы о сходстве средних значений двух или более выборок, принадлежащих одной и той же генеральной совокупности. Этот метод распространяется также на тесты для двух средних (к которым относится, например, t-критерий).

Двухфакторный дисперсионный анализ с повторениями представляет собой более сложный вариант однофакторного анализа, включающее более чем одну выборку для каждой группы данных.

<u>Двухфакторный дисперсионный анализ без повторения</u> представляет собой двухфакторный анализ дисперсии, не включающий более одной выборки на группу. Используется для проверки гипотезы о том, что средние значения двух или нескольких выборок одинаковы (выборки принадлежат одной и той же генеральной совокупности). Данный метод распространяется также на тесты для двух средних, такие как *t*-критерий.

Корреляционный анализ

Используется для количественной оценки взаимосвязи двух наборов данных, представленных в безразмерном виде. Коэффициент корреляции выборки представляет собой ковариацию двух наборов данных, деленную на произведение их стандартных отклонений.

Корреляционный анализ дает возможность установить, пропорциональны ли величины в наборах данных. А именно, большие значения из одного набора данных связаны с большими значениями другого набора (положительная корреляция), или, наоборот, малые значения одного набора связаны с большими значениями другого (отрицательная корреляция), или данные двух диапазонов никак не связаны (околонулевая корреляция).

Ковариационный анализ

Используется для вычисления среднего произведения отклонений точек данных от относительных средних. Ковариация является мерой связи между двумя диапазонами данных. Ковариационный (как и корреляционный) анализ дает возможность установить ассоциированность наборов данных по величине.

Описательная статистика

Данное средство анализа служит для создания одномерного статистического отчета, содержащего информацию о центральной тенденции и изменчивости входных данных.

Экспоненциальное сглаживание*

Предназначается для предсказания значения на основе прогноза для предыдущего периода, скорректированного с учетом погрешностей в данном прогнозе. Использует константу сглаживания, по величине которой определяет, насколько сильно влияют на прогнозы погрешности предыдущего прогноза. Более старым наблюдениям приписываются экспоненциально убывающие веса, при этом в отличие от скользящего среднего учитываются все предшествующие наблюдения ряда, а не те, что попали в определенное окно. Формула метода простого экспоненциального сглаживания имеет следующий вид:

$$\hat{y}_t = (1 - \alpha)\hat{y}_{t-1} + \alpha\hat{y}_t ,$$

где $0 < \alpha < 1$ – коэффициент экспоненциального сглаживания.

^{*} Исторически метод экспоненциального сглаживания был независимо открыт Броуном и Холтом для решения задач прогнозирования спроса на запасные части вооружения и военной техники ВМС США

Анализ Фурье

Предназначается для решения задач в линейных системах и анализа периодических данных, используя метод быстрого преобразования Фурье (БПФ). Данная процедура поддерживает также и обратные преобразования. Инвертирование преобразованных данных возвращает исходные данные.

Двухвыборочный *F*-тест для дисперсий

Двухвыборочный *F*-тест применяется для сравнения дисперсий двух генеральных совокупностей. Например, *F*-тест можно использовать для выявления различия в дисперсиях временных характеристик, вычисленных по двум выборкам.

Гистограмма

Используется для вычисления выборочных и интегральных частот попадания данных в указанные интервалы значений, при этом, генерируются числа попаданий для заданного диапазона ячеек. Например, необходимо выявить тип распределения успеваемости в группе студентов. Таблица гистограммы состоит из границ шкалы оценок и численности студентов, уровень успеваемости которых находится между нижней границей и текущей границей. Наиболее часто повторяемый уровень является модой интервала данных.

Скользящее среднее

Используется для расчета значений в прогнозируемом периоде на основе среднего значения переменной для указанного числа предшествующих периодов. Метод скользящей средней состоит в том, что исходный эмпирический временной ряд y_i преобразуется в ряд сглаженных значений (оценок) по формуле

$$\hat{y}_t = \frac{1}{p} \sum_{j=t-m}^{t+m} y_j,$$

где p – размер окна; j – порядковый номер уровня в окне сглаживания; m=(p-1)/2.

Скользящее среднее, в отличие от простого среднего для всей выборки, содержит сведения о тенденциях изменения данных. Процедура может использоваться для прогноза сбыта, инвентаризации и других процессов.

Проведение *t*-теста

Пакет анализа включает в себя три средства анализа среднего для совокупностей различных типов:

<u>Двухвыборочный t-тест Стьюдента с одинаковыми дисперсиями</u> служит для проверки гипотезы о равенстве средних для двух выборок. Эта форма t-теста предполагает совпадение дисперсий генеральных совокупностей и обычно называется гомоскедастическим t-тестом.

Двухвыборочный *t*-тест Стьюдента с разными дисперсиями используется для проверки гипотезы о равенстве средних для двух выборок данных из разных генеральных совокупностей. Эта форма *t*-теста предполагает несовпадение дисперсий генеральных совокупностей и обычно называется гетероскедастическим *t*-тестом. Если тестируется одна и та же генеральная совокупность, используйте парный тест.

<u>Парный двухвыборочный *t*-тест для средних</u> используется для проверки гипотезы о различии средних для двух выборок данных. В нем не предполагается равенство дисперсий генеральных совокупностей, из которых выбраны данные. Парный тест используется, когда имеется естественная парность наблюдений в выборках, например, когда генеральная совокупность тестируется дважды.

Генерация случайных чисел

Используется для заполнения диапазона случайными числами, извлеченными из одного или нескольких распределений. С помощью данной процедуры можно моделировать объекты, имеющие случайную природу, по известному распределению вероятностей. Например, можно использовать нормальное распределение для моделирования совокупности данных по росту индивидуумов, или использовать распределение Бернулли для двух вероятных исходов, чтобы описать совокупность результатов бросания монетки.

Ранг и персентиль

Используется для вывода таблицы, содержащей порядковый и процентный ранги для каждого значения в наборе данных. Данная процедура может быть применена для анализа относительного взаиморасположения данных в наборе.

Регрессия

Линейный регрессионный анализ заключается в подборе графика для набора наблюдений с помощью метода наименьших квадратов. Регрессия используется для анализа воздействия на отдельную зависимую переменную значений одной или более независимых переменных. Например, на спортивные качества спортсмена влияют несколько факторов (возраст, рост и вес). Регрессия "распределяет" меру качества по этим факторам. Результаты регрессии впоследствии могут быть использованы для предсказания качеств другого спортсмена.

Выборка

Создает выборку из генеральной совокупности, рассматривая входной диапазон как генеральную совокупность. Если совокупность слишком велика для обработки или построения диаграммы, можно использовать представительную выборку. Кроме того, если предполагается периодичность входных данных, то можно создать выборку, содержащую значения только из отдельной части цикла.

Например, если входной диапазон содержит данные для квартальных привесов, создание выборки с периодом 4 разместит в выходном диапазоне значения привесов из одного и того же квартала.

Двухвыборочный *z*-тест для средних

Двухвыборочный *z*-тест для средних с известными дисперсиями используется для проверки гипотезы о различии между средними двух генеральных совокупностей.

Статистические функции электронных таблиц

FPACП Возвращает 1	7
тттий возвращает	F-распределение вероятности.
ГРАСПОБР Возвращает	обратное значение для F-распреде-
ления вероят	гности.
ZTECT Возвращает,	цвустороннее Р-значение z-теста.
БЕТАОБР Возвращает	обратную функцию к интегральной
функции пло	тности бета-вероятности.
БЕТАРАСП Возвращает	интегральную функцию плотности бе-
та-вероятнос	ти.
БИНОМРАСП Возвращает	отдельное значение биномиального
распределен	ия.
ВЕЙБУЛЛ Возвращает	распределение Вейбулла.
вероятность Возвращает	вероятность того, что значение из диа-
пазона наход	ится внутри заданных пределов.
ГАММАНЛОГ Возвращает	натуральный логарифм гамма функ-
\Box ции, $\Gamma(x)$.	
ГАММАОБР Возвращает о	обратное гамма-распределение.
ГАММАРАСП Возвращает п	гамма-распределение.
ГИПЕРГЕОМЕТ Возвращает	гипергеометрическое распределение.
ДИСП Оценивает д	исперсию по выборке.
Опенивает л	исперсию по выборке, включая числа,
IMULIIA	неские значения.

диспр	Вычисляет дисперсию для генеральной совокупности.
диспра	Вычисляет дисперсию для генеральной совокупности, включая числа, текст и логические значения.
доверит	Возвращает доверительный интервал для среднего значения по генеральной совокупности.
КВАДРОТКЛ	Возвращает сумму квадратов отклонений.
КВАРТИЛЬ	Возвращает квартиль множества данных.
квпирсон	Возвращает квадрат коэффициента корреляции Пирсона.
КОВАР	Возвращает ковариацию, то есть среднее произведений отклонений для каждой пары точек.
КОРРЕЛ	Возвращает коэффициент корреляции между двумя множествами данных.
КРИТБИНОМ	Возвращает наименьшее значение, для которого биномиальная функция распределения меньше или равна заданному значению.
ЛГРФПРИБЛ	Возвращает параметры экспоненциального тренда.
ЛИНЕЙН	Возвращает параметры линейного тренда.
ЛОГНОРМОБР	Возвращает обратное логарифмическое нормальное распределение.
ЛОГНОРМРАСП	Возвращает интегральное логарифмическое нормальное распределение.

МАКС	Возвращает максимальное значение из списка аргументов.
МАКСА	Возвращает максимальное значение из списка аргументов, включая числа, текст и логические значения.
МЕДИАНА	Возвращает медиану заданных чисел.
мин	Возвращает минимальное значение из списка аргументов.
мина	Возвращает минимальное значение из списка аргументов, включая числа, текст и логические значения.
МОДА	Возвращает значение моды множества данных.
наибольший	Возвращает k-ое наибольшее значение из множества данных.
наименьший	Возвращает k -тое наименьшее значение в множестве данных.
НАКЛОН	Возвращает наклон линии линейной регрессии.
НОРМАЛИЗАЦИЯ	Возвращает нормализованное значение.
НОРМОБР	Возвращает обратное нормальное распределение.
НОРМРАСП	Возвращает нормальную функцию распределения.
нормстобр	Возвращает обратное значение стандартного нормального распределения.
НОРМСТРАСП	Возвращает стандартное нормальное интегральное

	распределение.	
ОТРБИНОМРАСП	Возвращает отрицательное биномиальное распределение.	
ОТРЕЗОК	Возвращает отрезок, отсекаемый на оси линией линейной регрессии.	
ПЕРЕСТ	Возвращает количество перестановок для заданного числа объектов.	
ПЕРСЕНТИЛЬ	Возвращает k -ую персентиль для значений из интервала.	
ПИРСОН	Возвращает коэффициент корреляции Пирсона.	
ПРЕДСКАЗ	Возвращает значение линейного тренда.	
ПРОЦЕНТРАНГ	Возвращает процентную норму значения в множестве данных.	
ПУАССОН	Возвращает распределение Пуассона.	
РАНГ	Возвращает ранг числа в списке чисел.	
POCT	Возвращает значения в соответствии с экспоненциальным трендом.	
СКОС	Возвращает асимметрию распределения.	
СРГАРМ	Возвращает среднее гармоническое.	
СРГЕОМ	Возвращает среднее геометрическое.	
СРЗНАЧ	Возвращает среднее арифметическое аргументов.	
СРЗНАЧА	Возвращает среднее арифметическое аргументов, включая числа, текст и логические значения.	
СРОТКЛ	Возвращает среднее абсолютных значений откло-	

	нений точек данных от среднего.
СТАНДОТКЛОН	Оценивает стандартное отклонение по выборке.
стандотклона	Оценивает стандартное отклонение по выборке, включая числа, текст и логические значения.
стандотклонп	Вычисляет стандартное отклонение по генеральной совокупности.
стандотклонпа	Вычисляет стандартное отклонение по генеральной совокупности, включая числа, текст и логические значения.
стошух	Возвращает стандартную ошибку предсказанных значений у для каждого значения х в регрессии.
СТЬЮДРАСП	Возвращает <i>t</i> -распределение Стьюдента.
СТЬЮДРАСПОБР	Возвращает обратное <i>t</i> -распределение Стьюдента.
СЧЁТ	Подсчитывает количество чисел в списке аргументов.
СЧЁТЕСЛИ	Подсчитывает количество непустых ячеек, удовлетворяющих заданному условию внутри диапазона.
СЧЁТЗ	Подсчитывает количество значений в списке аргументов.
считатьпустоты	Подсчитывает количество пустых ячеек в заданном диапазоне.
тенденция	Возвращает значения в соответствии с линейным трендом.
TTECT	Возвращает вероятность, соответствующую крите-

	рию Стьюдента.
УРЕЗСРЕДНЕЕ	Возвращает среднее внутренности множества дан-
	ных.
ФИШЕР	Возвращает преобразование Фишера.
ФИШЕРОБР	Возвращает обратное преобразование Фишера.
ФТЕСТ	Возвращает результат F-теста.
хи20БР	Возвращает обратное значение односторонней ве-
	роятности распределения хи-квадрат.
хи2РАСП	Возвращает одностороннюю вероятность распре-
	деления хи-квадрат.
хи2тест	Возвращает тест на независимость.
частота	Возвращает распределение частот в виде верти-
	кального массива.
ЭКСПРАСП	Возвращает экспоненциальное распределение.
ЭКСЦЕСС	Возвращает эксцесс множества данных.