Раздел 2. Выборочная и генеральная совокупность
Генеральная и выборочная совокупности.Статистическая совокупность
Генеральная (включает все единицы наблюдения, которые могут быть к ней отнесены в соответствии с целью исследования.) Генеральная совокупность может рассматриваться не только в пределах конкретных производств или территориальных границ, но также и ограничиваться другими признаками (пол, возраст) и их сочетанием. Таким образом, в зависимости от цели исследования и его задач изменяются границы генеральной совокупности, для этого используют основные признаки, ее ограничивающие. Выборочная (часть генеральной совокупности, которая должна быть репрезентативной по отношению к генеральной и наиболее полно отражать ее свойства). На основе анализа выборочной совокупности можно получить достаточно полное представление о закономерностях, присущих всей генеральной совокупности. Выборочная совокупность должна быть репрезентативной, т. е. в отобранной части должны быть представлены все элементы и в таком же соотношении, как в генеральной совокупности. Иными словами, выборочная совокупность должна отражать свойства генеральной совокупности, т. е. правильно ее представлять. Репрезентативность должна быть количественной и качественной. Количественная - основана на законе больших чисел и означает достаточную численность элементов выборочной совокупности, расчитываемую по специальным формулам и таблицам. Качественная - основана на законе вероятности и означает соотвестиве (однотипность) призщнаков, характеризующих элементы выборочной совокупности по отношению к генеральной. Методы формирования выборки: -случайная выборка - отбор единиц наблюдния наугад. -Механическая выборка- арифметический подход к отбору едниц наблдения типологическая выборка - при формировании генеральная совокупность предварительно делится на типы с послед. отбором единиц наблюдения из каждой типичесской группы. При этом число единиц можно отобрать пропорционально численности типической группы и непропорционально- Серийная выборка (гнездовой выбор) - формируется с помощью отбора не отдельных единиц наблюдения, а целых групп, серий, или гнезд, в состав которых входят организованные отдельным образом единицы наблюдения Метод многоступенчатого отбора - по количеству этапов различают отдноступенчатый, двуступенчатый, терхступенчатый и т.д. метод направленного выбора- позволяет выявить влияние неизвестных факторов при устанавлении влияния известных Алгоритмы параметрических критериев. Параметрические критерии применяются для выборок с нормальным законом распределения. Формула расчета этих критериев содержат параметры выборки: среднее, дисперсии и др. Поэтому они называются параметрическими. Нормальность закона распределения должна быть статистически доказана с помощью одного из критериев согласия: критерий Пирсона, F-критерия Фишера, -критерия Колмогорова и др.
– Критерий Стьюдента – Критерий Фишера – Методы однофакторного анализа – Методы двухфакторного анализа
Критерий Стьюдента
Описание критерия. Критерий применим для сравнения средних значений двух выборок полученных до и после воздействия некоторого фактора.
Двухвыборочный t-критерий для независимых выборок
Эмпирическое значение критерия Стьюдента сравнивается с критическим значением (по таблице 1 приложения) для данного числа степеней свободы.
Пример рассчитаем на лабораторной работе.
Cредне арифметические значения X и У: , в контрольной группе .Тогда^По таблице приложения для данного числа степеней находимСтроим ось значимости
Т.о. обнаруженные психологом различия между экспериментальной и контрольной группами значимы более чем на 0,1% уровне или иначе говоря средняя скорость сложной сенсомоторной реакции выбора в группе спортсменов существенно выше чем в группе людей активно не занимающихся спортом.В терминах статистических гипотез это утверждение звучит так : гипотеза Н0 о сходстве отклоняется и на 0,1% уровне значимости принимается альтернативная гипотеза Н1 – о различии между экспериментальной и контрольной группой.Двухвыборочный t-критерий для зависимых(связанных) выборокПод связанными выборками понимаются наблюдения для одной группы объектов, причем все наблюдения попарно связаны с каждый объектом исследования и характеризуют его состояние до воздействия и после воздействия некоторого фактора.Гипотезы: среднее значение в выборке не отличается от нуля.: среднее значение в выборке отличается от нуля.
1. Предварительно проверяется нормальность закона распределения по одному из критериев согласия. 2. Рассчитывается (i=1..n) – попарные разности вариант, и результаты измерений для i-го объекта до и после воздействия некоторого фактора. Величину будем считать независимой для разных объектов и нормально распределенной 3. Рассчитываются (лучше в табличной форме): сумма попарных разностей и вспомогательные параметры и . 4. Рассчитывается - эмпирическое значение критерия степенями свободы по формуле
Критическое значение для выбранной вероятности и заданного числа степеней свободы можно найти по встроенной в Excel функции СТЬЮДРАСПОБР.
Строим ось значимости
Критерий используется для сравнения дисперсий двух
выборок с нормальным распределением.
Гипотезы
|