3.3. КЛАССИФИКАЦИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВВзрывчатые вещества по характеру своего действия делятся на следующие группы. · Инициирующие взрывчатые вещества. · Бризантные (или дробящие) взрывчатые вещества. · Пороха. · Пиротехнические составы. Инициирующими называются такие взрывчатые вещества, которые обладают весьма высокой чувствительностью и взрываются от незначительного внешнего механического (удар, трение) или теплового (луч лазера, пламя, нагрев, электрический ток) воздействия. Эти вещества всегда детонируют и вызывают детонацию других взрывчатых веществ. Инициирующие взрывчатые вещества применяются в небольших количествах для снаряжения капсюлей, создающих первоначальный импульс взрыва. Бризантными называются такие взрывчатые вещества, которые при взрыве производят дробление окружающих предметов. Они значительно менее чувствительны к внешним воздействиям, чем инициирующие взрывчатые вещества, и детонируют обычно под воздействием взрыва другого взрывчатого вещества – детонатора. Детонатор представляет собой заряд взрывчатого вещества более чувствительного, чем взрывчатое вещество основного заряда. Взрыв детонатора осуществляется взрывом капсюля с инициирующим взрывчатым веществом (рис. 3.1). Сначала от механического или теплового воздействия взрывается капсюль. Образующаяся ударная волна вызывает взрыв детонатора, который, взрываясь, вызывает детонацию основного заряда. Бризантные взрывчатые вещества применяются в качестве разрывных зарядов для снаряжения мин, снарядов, подрывных патронов и служат для разрушения и дробления различных предметов и преград.
Рис. 3.1. Схема детонации бризантного взрывчатого вещества: 1 – капсюль (инициирующее взрывчатое вещество); 2 – детонатор; 3 – основной заряд бризантного взрывчатого вещества
Порохами называются такие взрывчатые вещества, характер взрыва которых позволяет использовать их в качестве источника энергии движения снарядов, мин, пуль и реактивных снарядов. Основным видом взрывчатого превращения порохов в обычных условиях является быстрее сгорание. Пороха к внешним механическим воздействиям не чувствительны. Разница в действии пороха и бризантного взрывчатого вещества можно пояснить простым примером, показанным на рис. 3.2. При быстром горении пороха (рис. 3.2, а) давление газа нарастает постепенно, снаряд движется с ускорением, врезаясь в нарезные каналы (которые служат для придания снаряду вращательного движения с целью стабилизации его траектории). При детонации (рис. 3.2, б) бризантного взрывчатого вещества при этих же условиях, газообразование происходит почти мгновенно, и образующиеся газы разрушают ствол и камеру.
Рис. 3.2. Схема действия взрывчатого вещества на снаряд при горении: а – пороха; б – бризантного взрывчатого вещества
Пиротехнические составы представляют собой смеси из взрывчатых и невзрывчатых веществ. Взрывчатые свойства у них выражены значительно слабее, чем у обычных взрывчатых веществ. Пиротехническим составам присущи специальные свойства (яркое свечение, дымообразование, окраска пламени). Они применяются в осветительных и зажигательных патронах, в салютах и фейерверках, в дымовых шашках и т.д. Рассмотрим более подробно основные типы взрывчатых веществ.
Инициирующие взрывчатые вещества
В качестве инициирующих взрывчатых веществ наибольшее применение имеют гремучая ртуть, азид свинца и стифнат свинца. Гремучая ртуть – фульминат ртути, представляет собой мелкокристаллический белый или серый порошок. Получается в результате действия этилового спирта на раствор ртути в азотной кислоте. Непрессованная гремучая ртуть чрезвычайно опасна в обращении, поскольку очень чувствительна. В спрессованном виде это вещество менее опасно и менее чувствительно к начальному возбуждению. Под влиянием влаги гремучая ртуть легко теряет свои взрывчатые свойства. При 5% влаги взрывчатые свойства понижаются, при 10% – она только сгорает, при 30% – превращается в инертное вещество. Азид свинца – свинцовая соль азотистоводородной кислоты, представляет собой белый порошок. Обладает меньшей чувствительностью, чем гремучая ртуть, однако обладает инициирующей способностью в 10 раз большей, чем гремучая ртуть. Не гигроскопичен и в воде не растворяется. Применяется в алюминиевых оболочках, так как с алюминием не реагирует. При взаимодействии с медью образует азид меди – очень чувствительное взрывчатое вещество. Стифнат свинца (ТНРС) – свинцовая соль стифниновой кислоты. ТНРС представляет собой твердое мелкокристаллическое вещество желтого цвета. Не гигроскопичен, не растворяется в воде и не взаимодействует с металлами. Чувствительность к удару ниже, чем у азида свинца, а к пламени – выше. Весьма чувствителен к электрическим разрядам. Инициирующая способность его ниже, чем у других инициирующих взрывчатых веществ. Инициирующие взрывчатые вещества в смесях с другими веществами образуют ударные составы, которые применяются для снаряжения капсюлей-воспламенителей и капсюлей-детонаторов. Рецептуры некоторых ударных составов приведены в табл. 3.2. Гремучая ртуть в ударных составах дает первоначальную вспышку, антимоний является горючим и служит для усиления форса пламени, бертолетова соль – окислитель, поддерживающий горение. Капсюли-воспламенители делятся на патронные и трубочные. Патронные капсюли-воспламенители применяются в патронах и капсюльных втулках стрелкового оружия и артиллерийских снарядах. Они воспламеняются от удара бойка и дают начальный импульс для воспламенения боевого заряда. Схема патронного капсюля-воспламенителя приведена на рис. 3.3.
Таблица 3.2 Рецептуры ударных составов для винтовочных и пистолетных капсюльных воспламенителей
Рис. 3.3. Схема патронного капсюля-воспламенителя
Он состоит из металлической оболочки (колпачка) 1, выполненной из латуни или меди, в которую запрессован ударный состав 2. Сверху ударный состав закрывается фольговым или бумажным кружком 3. Трубочные капсюли-воспламенители применяются в трубках и взрывателях и служат для инициирования детонации капсюля-детонатора. Схема трубочного капсюля-воспламенителя приведена на рис. 3.4. Рис. 3.4. Схема трубочного капсюля-воспламенителя: 1 – колпачок с отверстием; 2 – ударный состав; 3 – фольговая чашечка; 4 – фольговая диафрагма
Для снаряжения трубочных капсюлей-воспламенителей используется тот же ударный состав, что и для патронных капсюлей-воспламенителей, но его масса в (5 ÷ 10) раз больше и составляет (0.08÷0.2) г. Капсюли-детонаторы делятся на артиллерийские и подрывные. Артиллерийские капсюли-детонаторы применяют во взрывателях различных снарядов, мин, авиабомб и ручных грант. Назначение капсюля-детонатора – вызвать детонацию детонатора разрывного заряда бризантного взрывчатого вещества, которым снаряжен заряд. По характеру начального импульса, возбуждающего взрыв, капсюли-детонаторы могут быть следующих типов. · Накольные, действуют от накола жалом. · Лучевые, действуют от луча (форса) огня капсюля-воспламенителя. · Подрывные капсюли-детонаторы предназначены для возбуждения детонации подрывных зарядов. Они действуют от форса огня (бикфордов шнур) или от электрозапала. Схема подрывного капсюля-детонатора приведена на рис. 3.5.
Рис. 3.5. Схема подрывного капсюля-детонатора: 1-гильза; 2-стифнат свинца; 3-азид свинца; 4-тетрил
Бризантные взрывчатые вещества
Бризантные взрывчатые вещества применяются для снаряжения артиллерийских снарядов, мин, ручных гранат, авиабомб, а также для приготовления подрывных средств. Основные бризантные взрывчатые вещества, используемые в настоящее время – пироксилин, нитроглицерин, тротил, меланит, гексоген, динамит, а также различные смеси и сплавы. Пироксилин (нитроклетчатка) – твердое вещество волокнистого строения. Получается обработкой растительной клетчатки (хлопок, лен, древесина) смесью азотной и серной кислоты – нитрацией или нитрованием клетчатки. В зависимости от степени нитрации, содержание азота в пироксилине может быть различным. Чем больше содержание азота, тем выше взрывчатые свойства пироксилина. Пироксилин весьма гигроскопичен. При содержании влаги до 3% пироксилин называют сухим, при содержании влаги более 3% – влажным. Сухой пироксилин очень опасен – взрывается от удара и трения. При содержании влаги более 25% – он малочувствителен и безопасен в обращении и хранении. Пироксилин применяется для изготовления бездымного пороха и для подрывных работ. Для снаряжения боеприпасов – применяется пироксилин №1 (13% азота), пироксилин №2 (12% азота). Нитроглицерин – ядовитая прозрачная маслянистая жидкость. Получается обработкой глицерина азотной и серной кислотой. Очень чувствителен к ударам, трению, сотрясению. В чистом виде не применяется. Используется при изготовлении бездымных порохов в качестве растворителя и для приготовления динамита в подрывных работах. Тротил (тринитротолуол, тол, ТНТ) – это твердое мелкокристаллическое вещество темно-желтого цвета. Получается обработкой толуола (продукта сухой перегонки каменного угля) азотной и серной кислотой. Тротил нечувствителен к ударам и нагреванию, безопасен в обращении и обладает высокой стойкостью при хранении (толовые шашки сохраняют способность взрываться даже через десятки лет хранения). На открытом воздухе горит коптящим пламенем без взрыва. Тротил – наиболее распространенное взрывчатое вещество. Применяется для снаряжения снарядов, мин, бомб и в подрывных работах. Мелинит (пикриновая кислота) – плотная кристаллическая масса желто-лимонного цвета. Получается из карболовой кислоты путем обработки ее азотной и серной кислотами. Это более сильное взрывчатое вещество, чем тротил. Недостаток – способность образовывать в местах стыка с металлическими оболочками химические соединения (соли) – пикраты, очень чувствителен к удару и трению. Применяется для приготовления подрывных зарядов. Гексоген получают обработкой уротропина и пентаэритрита азотной кислотой. Является наиболее мощным бризантным взрывчатым веществом. Гексоген – кристаллическое белое вещество, хорошо плавится и не взаимодействует с металлами. Это более мощное взрывчатое вещество, чем тротил и мелинит, но и более чувствительное к механическим воздействиям. Флегматезированый гексоген применяется для снаряжения бронебойных и зенитных снарядов и для изготовления дополнительных детонаторов. Аммониты (взрывчатые вещества на основе аммонийной селитры) – это суррогатные взрывчатые вещества, которые составляют из смеси аммонийной селитры, тротила, порошка алюминия и других наполнений. По взрывному действию уступают тротилу, малопригодны для хранения и применяются обычно только в военное время (дешевизна сырья). В СССР во время Великой Отечественной Войны аммониты были основными типами взрывчатых веществ. В мирное время их используют в народном хозяйстве (подрыв ледяных заторов, угольных пластов в шахтах и т.д.). Для ручных гранат применяются две разновидности аммонитов – аммотол (смесь аммонийной селитры и тротила) и аммонал – смесь аммонийной селитры, бризантного взрывчатого вещества и порошка алюминия. Пластит–4 (С–4) – это тестообразная масса кремового или коричневого оттенка (реже – ярко-оранжевого). Состоит из 80 % порошкообразного гексогена и 20 % пластификатора (чем и обусловлены его свойства). По внешнему виду напоминает пластилин или воск, маслянист на ощупь, пластичен в температурном режиме от -30° С до + 50° С. Так же как и тротил, очень устойчив к внешним воздействиям – его можно мять, резать, ронять, подвергать ударам без опасных последствий. Особые свойства пластита определяют его применение для террористических целей – заряд пластита можно поместить в любую щель, раскатать тонким слоем в письмо, спрятать в конструкцию любой конфигурации. Применяется, чаще всего, в какой либо оболочке (бумага, мешочек) и прикрепляется клеящей лентой или скотчем к взрываемому объекту. Пластит–4 поставляется в стандартных брикетах массой 1 кг, обернутых бумагой. Заряды пластита применяются в активной броне танков, а также для снаряжения противопехотных мин МОН–50.
Пороха
Порохами, или метательными взрывчатыми веществами, называются взрывчатые вещества, для которых основной формой взрывчатого превращения является быстрое сгорание со скоростью uв»(1÷10) м/с. Пороха применяются в качестве источников энергии движения снарядов, пуль, мин, реактивных снарядов. Кроме того, пороха используются в качестве вспомогательных средств–воспламенителей, газогенераторов и т.д. Пороха делятся на две группы – механические смеси и пороха коллоидного типа. К механическим смесям относятся следующие составы. · Дымный (черный) порох. · Аммонийный порох. · Смесевые высокоэнергетические материалы и твердые ракетные топлива. Основой всех коллоидных порохов является пироксилин. В зависимости от характера растворителя коллоидные пороха делятся на следующие группы. · Пироксилиновые пороха (на летучем растворителе). · Нитроглицериновые пороха (на труднолетучем растворителе). · Тротиловые пороха (на нелетучем растворителе). · Вискозные пороха (без растворителя). Механические смеси Дымный или черный порох – это механическая смесь калиевой селитры, серы и древесного угля (S, KNO3, C). Более 500 лет дымный порох был единственным взрывчатым веществом, применявшемся в военном деле для изготовления зарядов в артиллерийском и стрелковом оружии и для подрывных работ. Только во второй половине XIX века для боевых зарядов вместо дымного пороха начали применять пироксилиновый порох. Наиболее оптимальный состав дымного ружейного пороха был установлен в конце XVIII века на основе работ М.В. Ломоносова. Состав дымного пороха приведен в табл. 3.3.
При увеличении его содержания, скорость горения пороха уменьшается. Сера является цементатором, связывающим селитру с углем, а также горючим веществом, облегчающим воспламеняемость дымного ружейного пороха (сера воспламеняется при более низкой температуре, чем уголь). С увеличением содержания серы скорость горения и сила пороха уменьшается. Дымный ружейный порох получается тщательным перемешиванием измельченных составных частей, прессованием смеси и дроблением прессованной лепешки на зерна различных размеров. Порох чувствителен ко всем видам механического воздействия (удар, трение, искра и т.д.). При попадании пули в пороховой заряд почти всегда происходит его взрыв. Вместе с тем, черный порох не детонирует. При сгорании дымного ружейного пороха образуется 45 % газообразных и 55 % твердых продуктов (дым, нагар в канале ствола). В настоящее время в боевых зарядах дымный ружейный порох не применяется (малая сила пороха, демаскировка дымом, опасность в обращении, гигроскопичность). Применяется для изготовления воспламенителей, а также в запалах ручных гранат. Аммонийный порох состоит из аммонийной селитры (90 %) и древесного угля (10 %). Получается смешиванием компонентов и прессованием в виде элементов заданной формы (кольца, сегменты). Аммонийный порох – твердое вещество серого цвета. В отличие от дымного пороха все его продукты сгорания – газообразные. Чувствительность к механическим воздействиям – слабая. Очень гигроскопичен и непригоден для хранения. Применяется в военное время для замены (25÷35) % заряда пироксилинового пороха. Смесевые высокоэнергетические материалы и смесевые твердые ракетные топлива (СТРТ) представляют собой широкий класс энергоемких веществ, использующихся в качестве источников энергии в газогенераторах различного назначения и в ракетных двигателях на твердом топливе. В состав СТРТ входят полимерное горючее-связующее (бутилкаучук), окислитель (перхлорат аммония или нитрат аммония) и металлическое горючее (порошкообразный алюминий). Коллоидные пороха Пироксилиновый бездымный порох изготавливается из смеси двух сортов пироксилина – № 1 и № 2 в разных соотношениях. Смесь этих сортов растворяется в спиртово-эфирной смеси. Получаемая однородная желеобразная масса продавливается через специальные фильтры. После резки и сушки получаются пороховые зерна (ленточные, трубчатые, цилиндрические, многоканальные пороха). В состав пироксилинового пороха вводят до 3 % примесей – стабилизаторов, флегматизаторов и пламегасителей. Стабилизаторы (дифениламин) замедляют разложение пороха и увеличивают срок хранения до 20 лет (без стабилизаторов порох хранится в течение 10 лет). Флегматизаторы (камфара) уменьшают скорость горения. Пламегасители (канифоль, дибутилфталат) уменьшают пламя при выстреле. Они поглощают часть энергии пороха и снижают температуру продуктов сгорания. Большой вклад в разработку бездымных порохов внес Д.И. Менделеев. Пироксилиновый порох имеет ряд преимуществ перед дымным ружейным порохом. · Обладает более высокой энергетикой. · При сгорании не образует дыма и нагара в стволе орудия (98.5 % – газообразные продукты). · Позволяет изготавливать заряды разнообразной величины и формы, что дает возможность регулирования продолжительности горения заряда. · Обладает низкой гигроскопичностью. · Сохраняет свои свойства при длительном хранении, нечувствителен к удару. Нитроглицериновый бездымный порох изготавливается из пироксилина, в качестве растворителя применяется нитроглицерин. В зависимости от марки пироксилина различают баллиститы (пироксилин № 2) и кордиты (пироксилин № 1). Преимущества нитроглицериновых порохов перед пироксилиновыми состоят в следующем: · Более высокие значения силы пороха. · Меньшая затрата времени на их производство – (5÷7) часов вместо нескольких суток. · Низкая себестоимость. · Лучшее сохранение свойств при хранении. · Применяются для минометов, реактивных систем залпового огня, ракетных двигателей на твердом топливе. Тротиловый порох изготавливается из смеси пироксилина и тротила. Порох получается путем специальной обработки при повышенной температуре и при большом давлении. В нем отсутствует летучий растворитель, поэтому тротиловый порох более стабилен по своим качествам, чем пироксилиновые и нитроглицериновые пороха. В последнее время получает все большее применение. Вискозный порох (порох без растворителя) представляет собой пронитрованную и стабилизированную предварительно уплотненную целлюлозу. Эти пороха еще плохо изучены. Применяются для изготовления зарядов к винтовкам и пистолетам. Пиротехнические составы Пиротехнические составы применяются для снаряжения специальных снарядов, пуль, ракет и так далее. Многие пиротехнические составы являются взрывчатыми веществами, однако взрывчатые свойства у них выражены значительно слабее, чем у обычных взрывчатых веществ. Энергия, высвобождающая при горении пиротехнических составов, затрачивается не на производство механической работы, а на образование пиротехнического эффекта (освещение местности, инициирование пожара и т.д.). Пиротехнические составы представляют собой механические смеси из горючего, окислителя, цементатора и специальных примесей. В качестве горючего применяются алюминий, магний, их сплавы, бензин, керосин, нефть, скипидар, крахмал и т.д.. В качестве окислителей – соли азотной, хлорной и хлорноватой кислоты, оксиды металлов (окись железа, переокись бария, двуокись марганца и др.). В качестве цементаторов – олифа, канифоль, шеллак, искусственные смолы (бакелит и др.). Они служат для связывания состава и придания ему механической прочности. Специальные примеси служат для окрашивания пламени или дыма. По характеру применения пиротехнические составы делятся на следующие группы. · Осветительные. · Зажигательные. · Сигнальные. · Дымовые. · Трассирующие. Осветительные составы применяются для снаряжения осветительных патронов, снарядов и авиабомб и служат для освещения местности или отдельных объектов. Наиболее употребительный состав имеет 18 % алюминия, 4 % магния, 75 % азотнокислого бария, 3 % олифы. Осветительные составы прессуются в цилиндрическую оболочку, с одной стороны которой запрессовывается воспламенительный состав (дымный порох). Схема осветительного патрона приведена на рис. 3.6. Характеристики некоторых осветительных составов приведены в табл. 3.4.
Таблица 3.4 Характеристики некоторых осветительных составов
Зажигательные составы применяются для снаряжения пуль, снарядов и авиабомб. Они делятся на три группы. · Термитно-зажигательные составы, содержащие в качестве окислителя оксиды металлов. · Зажигательные составы – кислородосодержащие смеси (соли). · Зажигательные составы, не содержащие окислитель.
Рис. 3.6. Схема осветительного патрона: 1–гильза; 2–капсюль; 3–заряд дымного пороха; 4–воспламенительный состав; 5–осветительный состав; 6-пыж
Термитно–зажигательные составы изготавливаются на основе термита (смесь 25 % алюминия и 75 % окиси железа) с температурой горения порядка 2500° С. В чистом виде термит не применяется, так как имеет небольшой радиус зажигания. Пример термитного зажигательного состава для 76 мм снаряда приведен в табл. 3.5.
Таблица 3.5 Состав термитного зажигательного снаряда
Зажигательные составы с окислителем в виде различных солей дают высокую температуру горения и легко воспламеняются. Эти составы используются для снаряжения зажигательных малокалиберных снарядов и пуль. Зажигательные составы без окислителя горят за счет кислорода воздуха. В качестве примера приведем авиабомбу с корпусом из электрона (сплав 92 % магния и 8 % алюминия), заполненным термитным составом. При горении такой бомбы развивается температура до (700 ÷ 900)° С и образуются раскаленные искры, которые разлетаются на большое расстояние. К зажигательным составам относится отвержденное горючее (напалм) – студнеобразная масса, получаемая смешиванием стеариновой кислоты и спиртового раствора едкого натра с нефтепродуктами. Легко воспламеняется и дает яркое объемное пламя. Самовоспламеняющиеся вещества – белый фосфор и смеси с ним легко воспламеняются на воздухе (Т»1000° С). Примером использования данного вещества являются бутылки для поджигания танков, широко применявшиеся во время Великой Отечественной Войны («Коктейль Молотова»). Они содержат горючее и фосфор, растворенный в сероуглероде. При испарении растворителя фосфор воспламеняется на воздухе, и зажигаются сначала пары сероуглерода, а затем и основное горючее. Сигнальные составы дают при горении цветное пламя, например красного, желтого, зеленого, белого цвета. Сигнальные составы с пламенем синего цвета не применяют, так как синее пламя плохо различимо на большом расстоянии. Для получения красного пламени в состав вводят соединения стронция, зеленого пламени – соединения бария, желтого – соли натрия, белого – соли бария и калия. Для увеличения яркости в сигнальные составы вводят до 5 % алюминия или сплава алюминия с магнием. Сигнальные составы применяются в 26 мм патронах (ракетницах). Высота подъема ракеты составляет 90 м, время горения заряда – 6.5 с, сила света пламени – 10000 свечей. Дымовые составы предназначены для маскировки объектов и задымления боевых порядков противника. Применяются для снаряжения дымовых шашек, снарядов, мин. По характеру процесса дымообразования делятся на три группы. · Дымообразование в результате горения. · Дымообразование в результате взаимодействия состава с влагой воздуха. · Дымообразование в результате термической возгонки. К первой группе относится белый фосфор. При температуре +50° С, он воспламеняется и горит с образованием густого белого дыма. Ко второй группе относятся триоксид серы, четыреххлористое олово, хлорсульфоновая кислота. К третьей группе относятся дымовые шашки (шашки Ершова), которые состоят из калийной селитры (10 %), хлористого аммония (40 %), бертолетовой соли (20 %), древесного угля (10 %), нафталина (20 %). При горении смеси Ершова происходит возгонка хлористого аммония и нафталина, конденсация паров которых приводит к образованию дыма. Трассирующие составы служат для обозначения пути полета пули или снаряда (белая или красная трасса). Примеры трассирующих составов приведены в табл. 3.6. Пиротехнические составы, наряду с рассмотренными выше примерами применения для военных целей, широко используются в качестве зарядов для снаряжения ракет и пиротехнических устройств при проведении салютов, организации красочных фейерверков и других праздничных зрелищ. Используемые при этом пиротехнические заряды являются комбинацией различных составов. Таблица 3.6 Состав трассирующих смесей
|